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Abstract

The paper is devoted to a matrix generalization of a problem studied by Grenander and
Rosenblatt (Trans. Amer. Math. Soc. 76 (1954) 112-126) and deals with the computation of
the infimum A of [ Q*(z)M(dz)Q(z), where M is a non-negative Hermitian matrix-valued
Borel measure on the unit circle T and Q runs through the set of matrix-valued polynomials
with prescribed values of some of their derivatives at a finite set J of complex numbers. Under
some additional assumptions on M and J, the value of A is computed and the results are
applied to linear prediction problems of multivariate weakly stationary random sequences. A
related truncated problem is studied and further extremal problems are briefly discussed.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In [22] (cf. also [9]) Szegd had studied the infimum of the L?>-norms (with respect to
an absolutely continuous non-negative finite Borel measure on the unit circle T of
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the complex plane C) of polynomials with prescribed value at some o« € C. Grenander
and Rosenblatt [8] extended Szegd’s results to the case, that at a finite number of
points of C the values of some derivatives of the polynomials are given. At the same
time these authors pointed out that their results can be applied to the theory of
univariate weakly stationary random sequences. For example, they used their results
to compute the linear prediction error of Kolmogorov’s prediction problem, which is
characterized by the assumption that the whole past of the sequence is known (see
[13,14]).

Although the title of the paper [8] indicated that there might be further
applications to prediction theory, it seems that this suggestion has been ignored for a
long time. The credit of calling the attention of prediction theorists to the paper [8]
goes to Pourahmadi [18]. Choosing the restraints of the extremal problem in an
appropriate way he computed the linear prediction error of Nakazi’s prediction
problem [16], where along with the whole past the values of the sequence at the first
n positive integers are assumed to be known (neN, where N denotes the set of
positive integers), and of a slight modification of Kolmogorov’s prediction problem,
where all but one values of the past are assumed to be known. Pourahmadi
concluded his paper with outlining some directions of further investigation. One of
them is a generalization to the multivariate case, which is the subject of the present
paper.

Let geN and denote by .#, the algebra of ¢ x g-matrices with complex entries
and by %i the subset of non-negative Hermitian ¢ x g-matrices. For an %i -valued

Borel measure M on T, one can introduce the right Hilbert .# ,-module L*(M) of
(equivalence classes of)) Borel measurable .#,-valued functions on T, which are
square-integrable with respect to M (see Section 2 for a more precise definition of
L*(M) and for references). Denote by (-, -» the .#,-valued inner product of L*(M).
Then the main extremal problem of the present paper consists in computing A =
inf < Q, O, where Q runs through the set of .# ,-valued polynomials with prescribed
values of some of their derivatives at a finite set J of complex numbers. The exact
formulation of this problem is given in Section 2.

It turns out that there are close relations between the extremal problems we wish
to study and the theory of g¢-variate weakly stationary random sequences
(““stationary sequences’ for short). On the one hand, we can apply the extremal
problems to linear prediction theory. On the other hand, results from stationary
sequences are useful in solving extremal problems. For the reader’s convenience,
some basic facts on stationary sequences are summarized in Section 3.

Section 4 contains some preliminary assertions on the main extremal problem.
Using some facts on stationary sequences we show that if TnJ =@, then the
singular part of the measure M does not influence A. Another result is proved under
the assumption that M is absolutely continuous and its Radon—Nikodym derivative
has the form ®*® for some .# ,-valued outer function ® of the Hardy class H;. Then
from a characterization of .#,-valued outer functions (cf. [17, p. 38]) it can be
derived easily that A =0 if J is outside the open unit disk D of the complex
plane C.
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From point of view of applications to prediction theory it is most important to
compute A if J is a subset of D. This can be done under some additional assumptions
on M. We follow the way of Grenander and Rosenblatt [8] in the univariate case.
First we study a truncated extremal problem, where additionally to the restraints
of the main extremal problem the degree of Q does not exceed a certain number
teNg = Nu{0}. Then we let ¢ tend to oo.

Section 5 is devoted to the truncated extremal problem, which is solved under the
additional assumption that the measure M is non-degenerate, i.e. M admits a system
of orthonormal .# ,-valued polynomials. Moreover, we try to give a description of
non-degenerate measures.

Section 6 deals with the limit process t— oo and with applications to prediction
theory. Our main result is obtained under the assumption that the Radon—Nikodym
derivative of the absolutely continuous part of M can be written in the form ®*® for
some outer function @ of H§ such that @ is invertible. Then A can be expressed with
the aid of @ (see Theorem 17). The proof of this result is based on some facts about
orthogonal .#,-valued polynomials as Delsarte et al. [3] developed. It would be of
interest to compute A without assuming that @ is invertible. Some problems
occurring in this case are discussed. For the most part, our applications to prediction
theory are analogous to Pourahmadi’s results [18] concerning univariate weakly
stationary random sequences.

The concluding Section 7 is devoted to a brief discussion of further extremal
problems, which are closely related to those of the preceding sections.

2. Formulation of the main extremal problem

Let geN. For Ae.#,, denote by A*, A", #(A), tr A, and det A the adjoint,
Moore-Penrose-inverse, range, trace, and determinant, respectively, of A. The
identity matrix of .#, is denoted by I, whereas the symbol 0 stands for a zero matrix,
whose size should be clear from the context. If 4 is invertible, we write A~! for its
inverse. The set %f will be equipped with Loewner’s semi-ordering, i.e. B> A4 if and

onlyif B— Ae.//7, A, Be ./ . Notions as infimum or minimum of a subset of .4
are to be understood with respect to Loewner’s semi-ordering. If 4 € ,ﬂj, the symbol

A% denotes the unique non-negative Hermitian square root of 4 and the inequality
A>0 means that A4 is invertible.

Let 9t be a right Hilbert .#,module with .#,-valued inner product <-,-)gy.
Throughout the paper, by a submodule of 9t we mean a closed submodule. If ¥ is a
subset of M, let \/gy, ¥ be the submodule of M spanned by the elements of .. Many
geometrical facts of 9t are similar to those of a Hilbert space. For the reader’s
convenience, we recall some of them. A detailed study of geometrical properties of a
Hilbert .# ;-module can be found in [7], for applications to prediction theory cf. [24].
If 9% is a submodule of M and FeIN, there exists a unique F;eI; such that
(F = F\,F — Fy gy is the minimum of the set {{F — G,F — G)g,: GeM;}. The
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matrix {F — F|, F — F| Yy is called the distance matrix of F to 9¢; and F) is the
orthogonal projection of F onto 9Mi; with respect to {-,->gy,. The submodule

MM ={HeM: {H,G)qgy =0 for all GeM,}

is called the orthogonal complement of Mt;. We will write 0t = Wt; @ (MSM,). The
element F — F) is equal to the orthogonal projection of F onto 9t & I, with respect
to < o >gﬁ7 hence,

<F1,F1>9Jt :mln{<F7 G,F* G>s_m: Geﬂﬁ@iml} (1)

Let M be an .4 f -valued Borel measure on T. Then 7 := tr M is a non-negative finite
Borel measure on T such that M is absolutely continuous with respect to 7. Let
w ::‘il—j‘r” be the corresponding Radon-Nikodym derivative. The set L?(M) of
(equivalence classes of) Borel measurable .#,-valued functions on T for which
J7 F*(2)W(z)F(z)t(dz) exists form a right Hilbert .# ,-module with .#,-valued inner
product

CF.GY o) = / F ) W()G()u(dz), F,GeI>(M),

and corresponding scalar inner product tr{ ¥, G ) 12y Recall that L*(M) does not
change if 7 is replaced by any non-negative o-finite Borel measure on T, with respect
to which M is absolutely continuous. For basic facts about L>(M) we refer to [19].

If & is a subset of L?(M), we denote by .7 its closure with respect to the topology
of L*(M). Moreover, for simplicity we will write \/ % instead of Vi & and
(- > instead of (-, ra(pp)-

Let 2 denote the (right) .# ,-module of .# ,-valued polynomials. Considering # as
a subset of L?>(M), we can formulate several extremal problems, which are natural

generalizations of the scalar case. Our main extremal problem is the following
problem (IT).

(IT) Let J be a finite subset of C and let W be a finite subset of J x Ny such that its
projection onto J is equal to J. For (a,k)eW, let B, €.#,. Furthermore, let

¢ ={0e2: QW (a) =0 for all (a,k)eW}
and
Ly ={0e?: QW (a) = B,y for all (o,k)eW}.

Compute the distance matrix A of Qe £ to £ with respect to {-,->.

Note that A does not depend on the choice of Qe %5 and that
A =inf{{Qp, 0p): Ope¥Lp} (2)

according to (1).
Problems of the present type are often formulated in a form similar to (2) (cf.
[1,8]). Our approach (IT) has the advantage that it makes use of geometrical
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properties of L?(M). For example, from the geometric facts of Hilbert .#,-modules
it immediately follows that problem (IT) has a solution, whereas in the case ¢>1 it is
not clear a priori whether the infimum on the right-hand side of (2) exists since .# q?
is not ordered totally.

For future use we introduce the following notation. If o€ J, let

ny = max{k: (o, k)e W}. (3)

3. Preliminaries from stationary sequences

We recall some basic facts on stationary sequences presenting them in a form
which is convenient for our aims. For a comprehensive introduction to this topic see
[24] or the monograph [20].

Let $ be a (right) Hilbert space over C with inner product (-, )¢, which is linear
with respect to the second component of (-, -)5. Let H?  be the g-fold Cartesian

row

product of , where the elements of $7  are written as rows. For u = (uy, ..., uy),

V= (v1,...,0) € DL, denote by [u,v] their Gramian matrix, i.e.

k=1,...,
[u,v] = ((”javk)sj)j:L...,:e‘%q’

where j and k denote the row and column indices, respectively. It is not hard to see
that $, is a right Hilbert .#,-module with .# ,-valued inner product {-,-»g¢ =
[" ]

Let Z denote the additive group of integers. A map

X :Zsn—x(n)eHl,

is called a g-variate weakly stationary random sequence (“‘stationary sequence’ for
short) if [x(m),x(n)] depends only on the difference m —n and not on m and n
separately, m,ne Z. The covariance matrix function

K: K(n) = [x(n),x(0)], neZz,

of x is a positive semidefinite .#,-valued function and, hence, has an integral
representation

K(n):Az”M(dz), nez, (4)

where M is a unique %f -valued Borel measure on T, the so-called spectral measure
of x. On the other hand, if M is an .# q? -valued Borel measure on T, then there exists
a unique (modulo unitary equivalence) stationary sequence X such that M is the
spectral measure of x.

The submodule S(x) of $7  spanned by the values of x is called the time domain
and the Hilbert .# ,-module L?(M) is called the spectral domain of x.

Throughout the paper, by y we denote the identity function on T, i.e.

1(z) =z, zeT.
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From (4) we obtain that the map

x(n)-y "I, zeT

can be continued to an isometric isomorphism between the time and the spectral
domains of x, which we will call Kolmogorov’s isomorphism.
A stationary sequence X is called completely non-deterministic if
S x) =\ {x(m): m<n} = {0}
”EZ 5:’10\”

and it is called deterministic if
\/ {x(m): m<n} = G(x), neZ.

35:{0\\«'
Each stationary sequence x admits a unique Wold decomposition into a completely
non-deterministic stationary sequence u and a deterministic stationary sequence v
such that for m,neZ we have the following properties:

x(n) = u(n) +v(n),

u(m) is orthogonal to v(n),

S(x) = S(W) ©S(v),

v(n) is equal to the orthogonal projection of x(n) onto &~*)(x) with respect to

<'v'>sj‘/ )

* S(v) = M)(x).
There corresponds a decomposition
M =M, + M, (5)

of the spectral measure M of x into the sum of the spectral measures M, of u and M,
of v to the Wold decomposition of x. The measures M, and M, can be obtained in
the following way. Let F, and Fy denote the images of u(0) and v(0), respectively,
under Kolmogorov’s isomorphism. Then

dM, =F;dM F, and dM,=F,dMF,. (6)
Moreover, via Kolmogorov’s isomorphism the Wold decomposition induces a

decomposition of the spectral domain of x. Denote by 9%, and 9t, the images of S(u)
and S(v), respectively, under Kolmogorov’s isomorphism, i.e.

Ny = \/{/'Fu: nez} (7)
and

Ny = \/{;("FV i nel}. (8)
Then from the Wold decomposition we obtain the following results:

Fy,+F, =1 (as elements of L*(M)), 9)

N®N, = L2(M), (10)
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Iy =9, and N, =N, (11)

Ny, ={F0: Qe2} (12)
and

Nyc=2. (13)

The spectral measure of a completely non-deterministic sequence has another
characterization. Denote by /4 the normalized (i.e. A(T) = 1) linear Lebesgue measure
on T. Let Hj be the Hardy class of .#,-valued functions on the unit disk (cf. [17,23]).

We consider H‘f as a right Hilbert .#,-module with inner product
(O,¥) ;= / *(2)¥(2)A(dz), @, YeH,.
T

A stationary sequence x is completely non-deterministic if and only if its spectral
measure M has the form dM = ®*® d A for some outer function ®e H 5 This implies
that if M = M, + M; is the decomposition of M into its absolutely continuous part
M, and its singular part M, and if dM, = ®*® dA for some outer function CDeHg,
then

My=M, and M, = M.

4. Some preliminary results on the main problem

It seems to be difficult to solve problem (IT) in its full generality. However, under
additional assumptions on M or J partial results can be obtained. We start with an
assertion which is an easy consequence of a characterization of .#,-valued outer
functions.

Theorem 1. Assume that there exists an outer function ® € H, 5 such that the measure M
has the form dM = ®*®di. If InD = 0, then A = 0.

Proof. Since @ is outer, we have Z(®) = R i-a.e. for some linear subspace R of C*
(cf. [23, Proposition 2.4 of Chapter 5]). Let

Hy(R) ={VeH,: #(¥)=R J-ae}.
It is easy to see that the map F — OF establishes an isometric isomorphism between
the right Hilbert ./,-modules L*(M) and H_(R). Thus, computing A of problem (IT)
is equivalent to computing the distance matrix of ®Q e H, 5(%) to ®Z with respect to
the inner product of H,f, Qe Pp. Let n, be defined as in (3), aeJ. Then []
(1 — )" "' 2= 2, hence,

o] (-t z2cog. (14)

aed

el
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Since from [17, p. 38] it follows that ®[[,., (x — oc)"“Jrl is an outer function, (14)
yields ®Z = Hj(R). Thus, A=0. O

Our next result shows that if J is outside the unit circle T, the measure M, does not
influence A. To prove it, we consider M as the spectral measure of a stationary
sequence and use the notations of Section 3. Let

Lo ={F,Q: Qe¥} and %, ={F,Q: Qe¥}.
Clearly, £, =N, and
LN, (15)

Denote by P, and P, the orthogonal projections in L?>(M) onto M, and 9Ni,,
respectively.

Lemma 2. For Fe L>(M),

PuF = F,F and PyF = F,F. (16)
Moreover,
PP @Z,. (17)

Proof. Relations (7), (8), and (10) yield
/Z”F:(z) W (z)Fy(z)t(dz) =0, neZ,
T
which implies that
F,WF, =0 rt-ae. (18)
From (9) and (18) we get
(F,Fy = (F,F,F,Fy + (F,F,F,Fy, FeL*(M).

This shows that the maps F— F,F and F— F,F, FeL?>(M), are contractions in
L*(M). Combining this with the fact that the trigonometric M 4~-valued polynomials
are dense in L*>(M) and taking into account (7) and (8), we conclude F,L*(M) <N,
and F,L>(M)<N,, respectively. Then (9) and (10) yield (16) and, hence, (17). O

Our next goals are to show that if the set T nJ is empty, we have equality in (15)
and (17).

Lemma 3. If xeC\T, then (" — &) ' M SNy and (1* — o) 'Ry SN,
Proof. If 0eC\(DuT), then

Ioe)
(=) ==Y @),
n=0
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if xeD, then

* —1
(=) =y ()"
n=0

Thus, the assertion follows from (11). O
Lemma 4. If TnJ =0, then £, = N,.

Proof. Let Ge L>(M)© Z,. Let n, be defined as in (3), «eJ. Since for Qe 2 the
polynomial Q [[,.; (x — o&)"”‘+l belongs to %, we obtain

0= <G,FVQ II G- a)”1“> <G II G oy R Q>

el aed

This yields

G ¢ -a)yelrMmon =N,

oeld

by (12) and (10). Then an application of Lemma 3 gives Ge L*(M) S N,. Thus, we
have proved (L>(M)© %y)<(L*(M)SN,), which together with (15) yields the
assertion. [

Lemma 5. If TnJ =0, then Wy Z.

Proof. We prove the equivalent assertion (L?(M)© Z)<(L*(M)EMN,). As in the
proof of Lemma 4 we have O [[,.; (x— oc)"’+1 e¥ for Qe?. Hence, if
Gel*>(M)© Z, we get

0=<G,QH (x—oc)”“+‘> <GH "““,Q>
el aeld

which implies

G H n¢,+l (LZ(M)GE@)Q(LZ(M)GERQ =

oed

by (13) and (10). Applying Lemma 3, we get Ge (L>*(M)©N,). O

el

Lemma 6. If Tnd =0, then ¥ = L, ® %s.

Proof. From (15) and Lemma 5 we conclude £, = Z. It follows Z, =% by (9).
Thus, (17) gives the result. [
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Now we can prove the assertion mentioned above. Let M be decomposed
according to (5) and let

AY) = inf{< 05, 0> 12, : Q8 L5},
Theorem 7. Let M be an ﬂq) -valued Borel measure on T. If Tnd = 0, then A = AW,

Proof. Let E be the unit operator and Q, Qg, and Q, be the orthogonal projection in
L*(M) onto Z, Z,, and &, respectively. Then E = P, + P, by (10), Q = Q, + Q, by
Lemma 6, and Py, = Q, by Lemma 4. Consequently, if Qe ¥z, we obtain

A= <(E_Q)Qa (E_Q)Q> = <(Pu _Qu)Q7 (Pu_Qu)Q>-

Since Py — Qy = Py(Py — Qy), from (16) and (6) then follows
A = (Py(Py — Qu) @, Pu(Pu — Qu) 2>
= {Fu(Pu = Qu)Q, Fu(Pu — Q)
={0~WQ. 0~ Wiy =AY O

Since M, is the spectral measure of a completely non-deterministic stationary
sequence, there exists an outer function (DeHg such that dM = ®*® dA. Then
Theorems 1 and 7 yield the following corollary.

Corollary 8. Let M be an /%f -valued Borel measure on T. If (TuD)nJ =0, then
A =0.

If the set TnJ is not empty, the equality A = A™ of Theorem 7 is not true in
general. For example, let ¢ .= 1, M be the Dirac measure concentrated at aeT,

W = {(2,0)}, and B, ) = 1. Then A =1 and AW = 0.

5. The truncated extremal problem and non-degenerate measures

To obtain further results on problem (IT) we follow the way of Grenander
and Rosenblatt [8] in the univariate case. First we study a truncated problem
and then approximate the solution of (IT) by the solution of the truncated
problem.

For teNy, let 2, denote the (right) .#,-module of .#,-valued polynomials
whose degree does not exceed ¢. Then the truncated problem (I1,) is formulated as
follows.

(IT;) Assume that the set £z 2, is not empty and let Qe (¥ gn2,). Compute the
distance matrix A, of Q to ¥ N2, with respect to {-,->.
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Note that under the assumption ¥z 2, # (), we have analogously to problem (IT)
that A, does not depend on the choice of Qe (¥gn#;) and that

A, = min{<Qp,0p): Ope(LpNP)}. (19)

Moreover, from Hermite’s interpolation theory (cf. [21, Section 10.2]) it follows that
FpnP, is not empty if

2 (n+1) -1,

oeld

n, being the numbers defined by (3).

Problem (I1,) will be solved under the additional assumption that the measure M
is non-degenerate. We call an %f -valued Borel measure M on T non-degenerate, if
{Q, 0> #0 for every non-zero Qe #. Otherwise M is called degenerate. It is well-
known (cf. [3]) that M being non-degenerate is equivalent to the fact that there exists
a sequence ((I)”)neNo such that ®,€ 2, and {(®,,D,,> = J,,1, where J,,, denotes the
Kronecker symbol, n,meNy. The sequence (®,),.y, is called a sequence of right
orthonormal .#,-valued polynomials corresponding to M. It is uniquely defined if
one additionally requires that the leading coefficients are positive Hermitian. In what
follows, (®,), .y, stands for an arbitrary sequence of right orthonormal ./#,-valued
polynomials corresponding to M.

Since several results of matrix theory rest on the assumption of non-degenerate-
ness (cf. [4] for some examples), a description of non-degenerate measures is of
interest. The following considerations are devoted to this question. From another
point of view non-degenerate measures were described and studied in [6, Section 5].

A number zeT is called a mass point of M, if M({z})+#0. It is called a point of
full growth of M if M(0)>0 for each open subset ¢ of T containing z. If g =1, a
point of full growth of M is simply called a point of growth of M.

It is well-known that for ¢ = 1, the measure M is non-degenerate if and only if M
has infinitely many points of growth (cf. [9, Section 1.11]). On the other hand, it is
clear that for ge N\{1}, there exists a non-degenerate measure M such that the set of
all points of full growth of M is empty. It might be hoped that for arbitrary ge N, the
measure M is non-degenerate if it has infinitely many points of full growth. But this
is not so as the following simple example shows.

Example 9. Let ¢ .= 2, M be absolutely continuous with respect to 4 and

7 1 z
7 (z) = (Z* 1>7 zeT.

Then all points of T are points of full growth of M. However, for the polynomial Q:

Q(z)::<_lz g), zeT,

we have (Q,0> =0.
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Despite its simplicity Example 9 is representative in a sense and shows the way to a
certain characterization of non-degenerate measures.

We call a Borel measurable function S:T—.#, a square root of W =4 if
S§*S =W r-ae.

Obviously, M is degenerate if and only if the following condition (C) is satisfied
for some and, hence, for any square root S of W.

(C) There exists a non-zero C?-valued polynomial P such that SP =0 t-a.e.
Proposition 10. Assume that (C) is satisfied. Then for any square root S of W, there

exist a finite set S of mass points of M and a rational .4 ,-valued function R such that R
is not invertible and S = SR t-a.e. on T\S.

Proof. Let P be a polynomial satisfying (C). Let
So={zeT: P(z) = 0}.

For zeT\Sy, let R(z) be the orthogonal projection in C? onto the linear subspace
spanned by

p1(2)
P(z) =
Pq(2)

Then R = I — R is not invertible and has the matrix representation

—1
q
2 wn=l1,...
Re1- (z " ) o
=

which shows that R is rational on T. Moreover, if S denotes the intersection of S
with the set of mass points of M, we have S = SR 7-a.e. on T\S. O

Let us mention the following special cases of Proposition 10.

Corollary 11. If the non-negative finite Borel measure det W dt on T is non-
degenerate, then M is non-degenerate. In particular, if

(1) 7 has infinitely many growth points and W is invertible t-a.e.
or if
(i1) 7t does not have mass points and W is invertible on a set of positive T measure,

then M is non-degenerate.

On the other hand, it is clear that for ge N\{1}, there exists a non-degenerate
measure M such that the non-negative finite Borel measure det W dt on T is the zero
measure on T and, hence, degenerate.
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It turns out that condition (C) is also necessary for M having the properties of
Proposition 10.

Proposition 12. Let S be an arbitrary square root of W. If there exist a finite set S of
mass points of M, a Borel measurable 4 ,-valued function F on T, and a rational M .-
valued function R such that R is not invertible and S = FR t-a.e. on T\S, then (C) is
satisfied.

Proof. If the number of growth points of 7 is finite, the result is obvious. Assume
now, that t has infinitely many growth points. Let Tg be the subset of T whose
elements are not poles of R. Then R is well defined but not invertible on T . Hence, if
z€ T g, the homogeneous linear system of equations with coefficient matrix R(z) has
a non-zero solution. Since R is rational, there exists a finite subset V of T g such that
on Tx\V Gauss’ algorithm can be applied in the same way, i.e. at each step we can
choose the Pivot element at a place independently of ze Tg\V. It follows that there
exists a non-zero C?-valued rational function R; such that R(z)R;(z) = 0 and, hence,
a non-zero C?-valued polynomial P; such that

R(z)P1(z) =0, zeTg\V. (20)

Let zo e T\S be a mass point of M or, equivalently, of . Then S(z9) = F(z9)R(zp). In
particular, zyp is not a pole of R. Thus, R is continuous at z; and (20) yields
R(z9)P1(z9) = 0. We obtain RP; =0 t-a.e. on T\S. It follows that (C) is satisfied if
S is empty. Otherwise, let {zy, ..., z,} be the set S, meN. Define P .= P, [[/_, (x —
zy). Then RP =0 t-a.e. O

Now we study problem (I1,). We solve it under the assumption that the measure
M is non-degenerate. To do this we first transmit it to another right Hilbert .#,,-
module.

Let us order the finite set W of problem (IT) or (IT,) totally. If W or W x W occur
as index sets of vectors or matrices, respectively, we assume that their entries are
ordered according to the ordering of W. Moreover, by k denote the number of
elements of W.

For meN, let M,, = M}, be the m-fold Cartesian product of .#,, where the
elements of 9N, are written as rows. For each X = (Xj,...,Xu),Y =
(Y1,...,Y,)eM,, and Ae.#,, we define

X+Y = (X1+Y1,...71Ym+Ym), X4 = (XlA,...,XmA)

and

m

(X, Yoy, =Y XY,
j=1

This way 9, becomes a right Hilbert .#,-module with inner product (-, gy .

m
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Let (®y),.n, be a sequence of right orthonormal .#,-valued polynomials
corresponding to M. It is not hard to see that the map

eWI‘EQ_>(<(I)0aQ>7 ceey <(DI7Q>)ESUE[+1

establishes an isometric isomorphism between the submodule 2, of L?(M) and the
right Hilbert .#,module 9., teNy.
For (o, k)eW, denote

@ = (@ ()], ... [0 ()] M.

Then, in view of (19), problem (II,) can be formulated in terms of 9, as the
following problem (H}#).

(r1#) Compute
A[ :min{<X,X>;mM: XEEUE[JFI, <(D(a_’k),x>§mt+l = B(%k), (Oﬂ,k)GW}

Introduce the matrix

B,1) e W >
Tr = (CPpatg, P Do, ) oy €M 1€,

where (o, k)eW and (f,/) e W denote the row and column indices, respectively.
By B we denote that element of 9., whose entries are the matrices BE} )’
(o0, k) e W, of problem (IT) or (IT)).

Theorem 13. Let teNy and let M be a non-degenerate M q? -valued Borel measure on
T. Then the distance matrix A, of problem (I1,) is equal to BT/ B".

Proof. Let XeM,,; be such that (@), X >y, = Bux), (2,k)eW. We compute
A; according to problem (Hf). This is equivalent to computing the distance matrix of
X to the orthogonal complement of the submodule g of M, spanned by @, ),
(o, k) €W with respect to <, >qy,,,- Taking into account (1) we see that this can be
done by computing {Xa, Xe »y,,,, Where X denotes the orthogonal projection of
X onto S¢ with respect to (-, >qy,,,. In particular, there exists 4, (8,/) €W, such
that

Xo= Y ®p)dp-
B ew

Putting this expression into the equalities
Py Xo D, = Bux), (,k)eW,
we get

> LDy, Py dom, Aps) = By (k) eW.
(Bl ew

According to the definition of T';, this can be written as AT'; = B or ;A" = B*, where
A€M has the block entries A7, ), (o, k) e W. We can conclude that the columns of
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B* belong to the range of the linear operator I'; in C? and this yields

I'I'/B" =B". (21)
Let B = BF;r and X = Z(,B,I)GW (D(/fyl)g(/f,/)’ where g?ﬁ,l)
block entries of BeM,.. Then XeSq and

(®(p), X — XD, = Bas) — Z D iy, @) o, Biss (22)
(BDew

€My, (B,1)eW, denote the

for each (o, k) e W. Since Z(/ﬁ/)ew (D), Pipry >, B(I?J) is the block entry at place
(o0, k) of I',B*, from the definition of B and (21) we obtain that the right-hand side of

(22) is equal to 0, (o, k) e W. Tt follows that X is the orthogonal projection of X onto
S¢ with respect to <, ->gy . This yields

At = <X, X > My — Z Z Bgzywk) < (D(%k), (D(/i,l) >9Jfr+1 é(ﬁ-,l)
(2,k)eW (B)eW

=BI'B* =BIT,I'B* =BIB". O

Remark 14. For oeJ, let n, be the numbers of (3). If 1=, _; (n,+1) —1, the
existence of Hermite’s interpolation polynomials (cf. [21, Section 10.2]) implies that
the elements of @, ;) €M, 1, (o, k) e W, are .# ,-linear independent and, hence, I'; is

invertible, i.e. T} =T, .

Remark 15. Note that the result of Theorem 13 remains true (with the same proof) if
we replace the assumption that M is non-degenerate by the weaker assumption that
M is non-degenerate of order ¢, i.e. {Q, Q) #0 for each non-zero Qe #,.

6. The main result and applications to stationary sequences

We study problem (IT) under the assumption that the set J is a subset of D, which
is the most important case from point of view of applications to prediction theory.
Our result follows from Theorem 13 by letting ¢ tend to oo. However, we were able
to compute lim,_, ,, A, under a rather stringent additional condition only. We will
assume that the following condition (C) is satisfied by the %f -valued Borel measure
M on T.

(C) The absolutely continuous part M, of M has the form dM, = ®*® dJ for some
outer function CDeHg such that @ is invertible A-a.e.

Note that under condition (C) the measure M is non-degenerate. Then our result
is a simple consequence of Theorem 13 and properties of orthonormal .#,-valued

polynomials, which are stated in [3].
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Lemma 16. Assume that (C) is satisfied. Furthermore, let (@) ey, be a sequence of
right orthonormal . ;-valued polynomials corresponding to M. Then for (v, w)e€ D2,

Z @, ()05 (w) = (1 — ow*) "o (v)[® " (w)]". (23)

The convergence at the left-hand side of (23) is uniformly on compact subsets of D?.

Proof. The assertions are implicitly contained in [3]. For the reader’s convenience,
we outline the way to obtain them. For me Ny, let 4, be the minimizing .#,-valued
polynomial according to [3, Theorem 2]. Then [3, Eq. (51) and the Christoffel-
Darboux formula (65)] yield

A111(U)A;11 (O)A:n (w)
= (1 —ow") Zm: D, (0)D;, (W) + oW Dy, (v) D}, (W), (24)
n=0

where (v, w)eD? and meN,. Furthermore, [3, Theorems 17 and 20] imply that

(I)’l(v)[d)’l(w)]* = lijx}ﬂ Am(v)Am 0)4;,(w), (v,w)e D?, (25)
and [3, Eq. (80)] gives
mleV D, (v)=0, veD. (26)

Letting m tend to oo in (24) and taking into account (25) and (26), we get (23). The
uniform convergence on compact subsets of D? is a consequence of [3, Eq. (81)]. O

Now we can state our main result, whose proof will be omitted since it follows
from Theorem 13 and Lemma 16 similarly to the scalar case, cf. Grenander and
Rosenblatt’s proof of [8, Theorem 1].

Theorem 17. Let M be such that (C) is satisfied. Assume that J=D. Let
r L — (1 - 71(1)—] (I)71 *\ 1%
(o), (B1) = 90k ol (( ow) (V) (w)]") U:W:ﬁ*,

where (o, k), (f,1)eW,
— (B ew
L= (Cam6) rew:
and let B be the same as in Theorem 13. Then the distance matrix A of problem (I1) is
equal to BT ~'B*.

It would be of interest to weaken condition (C) by avoiding the assumption of
invertibility of ®. The following considerations illustrate some of the occurring
difficulties.
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Let M be a non-degenerate measure of the form dM = ®*® dA, where ®e H 5 is an

outer function whose range is assumed to be (Z-a.e.) a certain non-trivial linear
subspace R of CY. Let e D, W = {(«,0)} and By, ) = I. Then Theorem 13 yields

; -1
A,:(Z; cp,,(@cp;(@) ., 1eN,

a well-known result (cf. [1]). On the other hand, A can be computed directly. In fact,
the proof of Theorem 1 shows that computing A is equivalent to computing the
distance matrix of ®e H;(R) to ®.Z with respect to the inner product of H;. We
have Q€% if and only if Q) = (y —a)Q for some Qe?. Thus, ¥ = (y —
o) H (R). Tt follows that ¥ e H, (R) is orthogonal to ®.Z if and only if

0= [ 1= 9000 ¥
— [ @EQEI ) + 2 (#6) - WO) - )

:/T[CD(Z)Q(Z)]*[Z*‘P(O)—a*‘P(Z)]i(dZ% Qe?. (27)

Let W(w) = >~ ¥aw", we D, be the Taylor expansion of . From (27) we obtain
that W is orthogonal to ®.% if and only if ¥, — o*'¥,, = 0, ne Ny, which means that
¥ = (1 —a*y)""W,. Thus, the orthogonal complement 9t of ®Z is the submodule
spanned by (1 — oc*;{)fngg, where Py denotes the orthoprojector in C? onto ‘R.
Using Cauchy’s formula, we easily obtain that the orthogonal projection @y of ®@
onto N is equal to (1 — ||*)(1 — a*y) ' Pr®(a). Then

A= ( Dy, Py ) g2 = (1 - o) @ (o) D ()

by (1) and Cauchy’s formula. Because of A = lim,_, ,, A, we get

, -1
gg(zammw>=uwWmew (28)
n=0

Since the kernel of ®(«) is a non-trivial subspace of CY, from (28) it follows that
oo @, ()@} (o) diverges on a non-trivial subspace of CY. This shows that an
analogue of (23) with @~ ! replaced by ®* cannot be true. Of course, if one considers
matrix partitions according to the orthogonal decomposition of C? into the range of
®*(«) and the kernel of ®(a), one can obtain a certain convergence result for the left
upper corner. But this seems to be not too useful since the function whose value at
we D is the orthogonal projection onto Z(®*(w)) is not analytic in general.

Now we will apply Theorem 17 to some linear prediction problems of stationary
sequences. For meN and a stationary sequence x := (x(n)) we consider the
following problems:

nez»

(x1) Compute the distance matrix Ay of X(0) to Vg {x(n): n<0}.
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(x2) Compute the distance matrix Ao of x(0) to V() {x(n): n<m and n#0}.

(x3) Compute the distance matrix A(3) of X(0) to Vg {x(n): n<0and n# —m}.
Let M denote the spectral measure of x. Using Kolmogorov’s isomorphism we can
formulate problems (x1)—(x3) as extremal problems of type (IT), with special choice
of the restraints. For (x1) this is easy, for (x2) and (x3) this can be done analogously

to the univariate case (see [18, Section 2]). We obtain the following problems (Ily;) —
(Ilks), which are equivalent to the problems (x1)—(x3), respectively:

(Iy1) Compute Ay = inf{<Q,0>: Qe2,Q(0) = I}.
(TMx2) Compute Ay = inf{<Q,0>: Qe2, 0™ (0) = m!I}.
(Tls) Compute Ay f1nf{<Q,Q>. Qe?,0(0) =1,0"™(0) = 0}.

If we assume that M satisfies condition (C) we can apply Theorem 17 and obtain the
following assertions.

Solution of (M) under (C): We have W ={(0,0)}, Bjgg =1, and T =
®~1(0)[®'(0)]*, hence

a result which is well-known.
Solution of () under (C): We have W = {(0,m)} and B(om = m!l. Let

Yw) = Z Djvvj, weD,

be the Taylor expansion of ®~!. Then similarly to the case ¢ = 1 (cf. [18, pp. 7-8]) we
get T = (m!)zzj’io D;D;, which yields

m -1
Ay = (E D_,»Dj) : (30)
-

Solution of (I3) under (C): We have W = {(0,0), (0,m)}, Bo,0) = 1, and B, = 0.
Similarly to the case g = 1 (cf. [18, pp. 7-8]) we obtain

DyD m!Dy D,
~ \mD,Dy (m)* ", DD} )

From Theorem 17 it follows that A(y3) is equal to the left upper corner of I'"! which
is equal to

m -1 -
Awsy = | DoDjy — DoDY, <Z DD} ) D,.D;; (31)

by Frobenius’ formula.
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Problems (x1)—(x3) were first studied for ¢ = 1. We mention the following papers.
Problem (x1) is a part of a classical prediction problem and was solved by
Kolmogorov [13,14]. Problem (x2) is called Nakazi’s prediction problem and was
formulated and solved under additional assumptions on M by Nakazi [16]. Cheng,
Miamee, and Pourahmadi solved it completely (see [2, Theorem 4]) as well as
problem (x3) (see [2, Theorem 5]). Some of these results were generalized to
harmonizable stable sequences (cf. [15] and the references quoted there).

For arbitrary ge N, problem (x1) was extensively studied (cf. [20,24]). The result
(30) was given in [5, formula (5.10)], whereas an expression for A3 was not
correctly stated in [5]. The corresponding formula (5.16) of [5] becomes correct and
then coincides with (31) of the present paper if one replaces B; by B;, j=0,...,n,
and A4y by A; there.

In all papers above the result of Theorem 17 was not applied explicitly. For ¢ = 1,
Grenander and Rosenblatt [8] pointed out its usefulness to prediction theory.
Pourahmadi [18] applied it to the univariate versions of problems (x2) and (x3) and
suggested to study the multivariate case along these lines.

7. Associated extremal problems

We briefly mention two further types of extremal problems, which are closely
related to problems studied in the previous sections.

First consider the following problems (IT') and (IT}), whose solutions can be easily
expressed by the solutions of (TT) and (TI,), respectively, teNo. Let ./} =
{Adel,: detA=1}. Let W and By, (¢,k)eW, be such as in the formulation
of problem (IT) and let

3/3 2133%;

={0e2: QW (a) = B, 14, (2,k)eW, for some Ae ).

(IT") Compute 6 = inf{tr<{ Qp, Qp>: Qe L%}
(IT)) Assume that 7€ Ny is such that the set ¥, "2, is not empty. Compute 6, =
min{tr{ Qp, 0p): Qpe L2}

To express & by A, note that ﬂ;m%; ={A44": Ae/} and recall that if
Ae. ', then
(detA)é =4 inf{tr(4C): Cettynl ]}
(cf. [11, Problem 19 of Section 7.8]). Thus, we have
O =inf{tr{ QOp, 0p): Qpe Ly}
=inf{tr{ QpA4, QpA ): QBGS’B,AG,%;}
=inf{tr(A"{Qp, Oy A): Ope Lp, Ac.M}
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= inf{tr({ Qp, Qp>AA"): Qpe Ly, Ac.dl)}
:inf{tr((QB, QB>C) . QBED?B, CE%;(\%;}

1 1
=inf{g(det <Qp,0p>)1: Ope L} = q(det A)4. (32)

1
Similarly, ¢, = g(det A,)4, teNj.
As a special case we mention the following result. Let W == {(0,0)}, B(gg) = I,
and assume that M satisfies (C). Then from (29) and (32) we get

2
5 = qldet ®(0)[7,

a well-known result announced by Zasukhin [25]. For its proof see [10]. Compare
also [5, proof of Theorem 4.4] for an alternative proof and [12] for an L?-version,
pe(0, o), of this result.

Our second remark deals with the fact that all extremal problems of the present
paper have “left versions™, i.e. one can consider Z as a subset of the left Hilbert .# -

module L7 (M) of all (equivalence classes of ) Borel measurable .#,-valued functions
F on T, such that [} F(z)W(z)F*(z)t(dz) exists and study the extremal problems
with respect to the inner product

(F.G) o = /T F(z)W(z)G*(2)t(dz), F,GeL}(M).

Corresponding results can be proved by an adaption of the arguments for the
“right” results or by application of this ‘“‘right” results to the transpose measure M ' .
We omit the details. However, there is another method to relate truncated “left”” and
“right” problems with concrete restraints to truncated “right” and ““left”” problems,
respectively, with restraints which differ from the initial restraints in general. In fact,
for teNg and Qe 2;, set O(z) = Z'Q(L)", zeT. The map 0 — O establishes a one-to-
one correspondence on 2;, and one has (0, 0> = (0, Q~>Lf(M)- For example, if we
set W := {(0,0)} and B = I, we get

At :mln{<Q7Q> Qeﬂla Q(O) = I}
=min{<Q,0) 2y Q2,, Q(0) =11}, 1Ny,

and if we set W = {(0,7)} and B, = tI, we get

A, =min{{Q,0)>: Qe#,, Q"(0) =1}
:mln{<Q7Q>L12(M) Qegh Q(O):I}7 ZEN07

this way.
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